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Simple closed analytical expressions are obtained for some integrals and infinite sums
involving Legendre functions. The results are believed to be new. These sums and integrals
may be useful for the calculation of magnetic fields with configurations close to the toroidal
ones. The standard results of various asymptotic limits are recovered. € 1987 Academic Press, Inc.

In Ref. [1] we have obtained in three different ways the components of the vector
magnetic potential (VMP) for the toroidal solenoid. As they satisfy the same
equations and the same boundary conditions, they should coincide everywhere (see,
e.g., [2]). By comparing these components one can derive simple closed analytical
expressions for some integrals and sums involving Legendre functions. These
expressions are lacking in the mathematical handbooks, treatises, and original
publications [3-12]. Suspecting that in some cases [13] the development of the
potential w.r.t. the Legendre functions is invalid, we study the convergence of the
treated series in those particular cases. The new expressions found for the sums and
integrals may be applied to the calculation of the magnetic field with configurations
close to the toroidal ones.

2

As we shall use toroidal coordinates the associated mathematical details are
provided. The cylindrical coordinates are expressed in the toroidal system as
follows:

sh u _ sin 6

»P=0

=q—=d—
ch y—cos 0 ch y—cos 6

(—n<f<n,0<u<oo,0<p<2n).

The torus surface is defined by u=constant. The torus ({(p—d)*+z*=R?)
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parameters d and R are expressed as: R=a/sh u, d=a-cth u. For points on the z
axis y=0. In the z=0 plane, §=0, for p>a and 8= + =z for p<a.

Let pu= u, determine a particular solenoid. Then for u> u, (u <) the point
p, z, ¢ lies inside (outside) the solenoid. The magnetic field equals H = g/p,
H,=H_.=0 inside the solenoid and zero outside of it. The constant g depends on
the total number of coils and on the current strength: g = 2nJ/C; C is the velocity of
light.

3

The VMP of the toroidal solenoid may be viewed as a superposition of VMP for
separate coils. At the point p, z, ¢ one finds [1],

2n
A(p. z):jo (d~ p cos ) Flp. z. ) do,
(3.1)

2n
A,(p, z, )=:f cos ¢ Flp, z, @) do

0

(due to axial symmetry A, and 4. do not depend upon ¢ and A4, =0). Function F
is given by

\/E g 0 {p2+22+d2+R2—2dpcos¢}
1/2

Flp, z, 9)=—— 2
b 2 ) = T eos o AP T 25T 2R[(p cos o —d)* +2°]""

Here and in the following P*(x) and Q' (x) are the Legendre functions of the Ist
and 2nd kinds, respectively. If the superscript equals zero, we omit it.

A. and 4, may also be obtained from the solution of the Poisson equation in
toroidal coordinates. Thereby, one has [1],

2./2 *
A.= \/_g«/chy—cos() Y R%u) cos n,
n=0

T

2.2 ke
A,,:——n—g‘/chu—sin() Y. RI(u)-sin nd.

n=1

The functions R, equal

RY(u)=C (o) P, 12(¢h o) Q, 12(ch p),
Ri(u)=—-0Q,_ a(ch uo) [P, 12(€h o) — P, _3(ch pg)]- er,f 1/2(Ch ®)

inside the solenoid (u > uy) and

RS(#) =C, (o) Q.- 1/2(Ch Mo) P, . 1,’2(Ch i),
erz(#) =-0, 1/2(Ch o) [O,+ 1,/2(Ch o) —Q, 3/2(Ch Ho)] P,l, - 1/2(Ch U
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outside if (1 < po); Culio) = (14 3,0)7" - [(n+3) Qnirpplch o) — (n = 3)
Qu—3a(ch o).

Equations (3.1) and (3.2) satisfy the same equations and boundary conditions
(they are everywhere continuous, finite and tend to zero as r ~* for r — ). So they
should be the same (details may be found in any textbook on mathematical physics
(see, e.g., [2]).

A direct comparison of Egs. (3.1) and (3.2) is not very useful due to their com-
plexity. Consequently, we consider particular cases. Set p =0 in (3.1). Then one has
for A. on the z axis

\/Egd &+ 2+ R
A= 0.2) 0, (RN 33
=0 Q”2<2R d2+z2) o

Put u=0 in (3.2) (this corresponds to the z axis). Taking into the account the
behaviour of P”(ch u) for — 0 [37] and comparing (3.2) and (3.3) one obtains

J1—cos8 Y C,0, ,(ch pg)cosnd
n=40

B ch y, 0 [1+mmMmew ] (34)
2 /2 [1+2sh’u/(1—cos )1 =1 /1472 sh%uy/(1 —cos 0)° '

For the particular values of # one obtains from (3.4) closed expressions for infinite
sums involving Legendre functions. Set 8 =r. Then'

(3.5)

x T 1 { +ch’u
—1Y'2n+1)-Q,_,nchu) 0, r(chu)=- ( )
ugo( )"( )-Q 1,2( - Q 1/2( u) 4\/Eh_/,th/2 2¢ch i

For 0 - 0 both sides of (3.4) tend to zero as 03, so that equating coefficient at 6’
one finds

[S)
o

h

T

Z (2" + 1)2 ’ Qn— 1/2(Ch H) ’ Qn+ 1/2(Ch ﬂ) ='§ S
n=0

Finally, for 8 =x/2,

=

£ (3.6)

=
=

Q _plch ) Q5(ch p)

o

+ 2 (=10, 1/2(Ch W [dn+1) Qs y 1/2(‘3h W)~ (4n—1)Q,,_3p(ch w]

n=1

n chu (l +ch 2;1)
= i (3.7)
ﬁ (ch 2u)** i 2 \/ch 2u

!'In expression (3.5) and in the following ones ((3.6), (3.7), (3.8)) we omit zero index of u. So p in
(3.5) has no relation to u occurring in (3.2). (In fact, we put =0 in (3.2) to obtain {3.4).)
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We now prove that Eq. (3.6) converges. For fixed ¢ and n— co one has [3],
Q. _1p(ch p)~ /n/2n sh pexp(—pun). So that for n - o0,

@14 170, saleh 1) O ntech ) ot 2D o b w20 10]
! ’ 2shp /n(n+1)

It follows that as n — oo the ratio of two successive terms in (3.6) is equal to
exp(—2u). Thus, the series (3.6) converges, for any finite x>0, as a geometrical
progression. Note that one may also derive from (3.4) the following closed
expression for the integral:

jlﬂ cos nf db 0 [ 1 +sh?u/(1 —cos 6)
J1—cos 0 [1+2sh?u/(1—cos 6)]* v \/1 + 2 sh?u/(1 —cos 0)}

2./2 1
:% Q,_1x(ch p) l:(n +§) Q.4 1(ch p)— <n —§> Q,_3n(ch ,u):I. (3.8)

Now consider the VMP component 4,. For p — 0 it decreases as the first power
of u. Equating coefficients at g in (3.1) and (3.2) one obtains:

sl

Z (4’72 —1)-Q, _plchu) [0, 1/2(Ch U)—Q, 3,(ch p)] sin nt

n=1
sin 6 1
(1 —cos 0)*2 [1 +2sh?u/(1 —cos 8)

_ l+sh’u/(1 —cos )
T [1+2sh?u/(1 —cos 6)]"*

=L chyu-shu

7

1774 [201,(x) =30, ,5(x)],

(Here we again omitted zero index of u,.) As before one assigns to 8 specific values.
For 6 -0 one recovers (3.6), ie., nothing new. For 8 - a new equation is
obtained

S (—1)n-(n4 1) (204 1) Oy yalch 1)+ O, 1 1ach )

n=1

o I +ch?
= x [3-(14ch’u) @, 5(y)+2sh?u- Q1 ,(»)], V= 2Ch/l‘u.

32 (ch )

The convergence of (3.9) is proved along the same lines as that of (3.8). Finally, for
0=n/2,

i “(An+1)-(4n+3) 0y, I/Z(Ch #)[Q2n+3/2(Ch 1) — Qo 1s2(ch p)]

ch?u

T et s s (201502030, =

NG
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4

New relations are obtained if one equates the integral § 4, dl along the closed
contour passing through the hole of the toroidal solenoid to the magnetic field flow
¢=[{HdS=2nga-(cth p,—1). For definiteness choose a contour with fixed
{<po) and ¢ (see Fig. 1). Then

fadi=al 4,—2 (4.1)

. "chu—cosf

Here A, is the tangential component of A along the treated contour: 4,=
—[shp-sin6A,+ (1 —chp-cos @) A.](ch y~—cos §) '. Inserting A, and 4. from
(3.2), carrying out the integration in (4.1) and equating the result to ¢, produces

Y @y raleh ) Oy, afch f) =" (cth = 1) (42)

n=0

This relation may also be proved without relying on the physical aspects of the
problem. Consider the integral:

2n cos nf
L iyt (43)

FiG. 1. Schematic presentation of the toroidal solenoid treated. At the right one sees a typical path C
(corresponding to u = const., ¢ = const. along with the integral § 4, d! equals the magnetic field flow 4.
The same is true for the integral aong the z axis. In fact one may close this path by the circle Cg, with
sufficiently large radius R,. For R, > d the integal along Cg, is negligible, so there remains only the
integral along the whole z axis.
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Direct integration gives

2 /2n /1 1 PN
I(A) exp[’” (TA)} hy 7 Qi lehi) (44

The integrand in (4.3) may also be viewed as a product of two cofactors:

cos nf _ 1
(ch u—cos )" (ch u—cos 0

(O<A,<A)

)A—f Ay

Expanding both of them in cos nfl [3] and integrating as in (4.3) one obtains

4 exp(—inA) 1 A A 12
. a4 - 12 h
F(A )F(A_.A )(Sh #)A7121+6mo m— 172 (C ,u)

[Qm-%n; I/Z(Ch u)+ Q;m - }1’(2 ],"Z(Ch ,u)] (45)

Comparison of (4.4) and (4.5) leads to

f]*lZ(Chu) QA Al Chﬂ + Z Qm Alﬁlz(Ch)u')

m=1

[Qm +rn / 172 + l/rlrll - ’I',"l ],Z(Ch lu):]

| [(A,) T(A= 4,
:7‘/n/2sh,u ( )1_(11) ) Q1 12(ch p). (4.6)

Note, the sign of the modulus in Q}} , ,, may be omitted since, for n integer

[3], Q,/,', ax)= Q" no12

Consider now particular cases of (4. 6) For n=1,4=1, 4, =% one obtains (4.2)

{keep in mind that [3]: nlch gy=i/a/2sh u exp(—pun)). For n=0, 4A=1,
A, =4
l o 72:Z
L(ch p)]*+2 H(ch u)]? = : .
[Q l,/Z(C lu)] + ngl [Qn 1,_(C ,u)] 2 Sh # (4 7)
The integral
j C A(p=0,z)d:= ¢ (4.8)

s

The equality of (4.8) and ¢ may be independently confirmed by putting u=0
{this corresponds to the z axis) in Eq. (3.2) for 4. and integrating (4.8) over 0

2 This follows from the fact that the integration path along the z axis may be closed by a circle Cpg,
of sufficiently large radius R, (Fig. 1). The integral over Chry: R0§A,,‘ do, (here 0, is the polar angle
in spherical coordinates and 4, is the component of A along the C #,) tends to zero as Ry?as Ry— =
(In fact, 4y =A4,-cosf,— A4_-sin 6, and Eq. (3.1) results in the following asymptotic behavior of 4,
and A. at large distances 4.~ ng dR*(1+ 3 cos 20,)/8r%), 4, ~ 3ng dR?sin 20 /8% S,. at r=R, A x
(g dR*n/4R}) sin 0,.
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{(dz= —dbf/(1 —cos 0)). On the other hand one may substitute A.(p =0, z) given by
(3.3) into (4.8). Then:

d+2+R
d —a o — d_ dZ__RZ
VF Jo e Qe <2R o )

or in dimensionless variables:

« dx 1+r +x 4
1/2 e 1_ 1—2. 4.
Jo(+x)3/4Q/(2 \/1+x> 1=V (49)

5

The following equations are equivalent to Poisson equations

04, 04 i
pn a@p ——B[R Jp—=dP¥+:z%], d1vAa- —( p)+%4i=0. (5.1)
S Z

Here 6(x) is the step function: 8(x) =1 if x >0 and 0 if x <0. Now find solutions of
(5.1). The gauge condition is automatically satisfied if

1
PR - 4 (5.2)
p 0z p op

Inserting this into the first Eq. (5.1) one obtains a second order equation for . It
has the solution

4‘/_gsh,u./ch;4—cos Z Walu) imn()’

where i, 1s given by

du
b= 0} aleh ) | P a(eh ) Q) paleh ) g

Ho
| o 2 du
+ Pn — l/Z(Ch lu) J‘“ [Qn - 1/2(Ch l’t)] S_h—;

inside the solenoid (¢ > o) and ¥, = PL_ | ,(ch u) [ [Q%_ | 5(ch u)]1*(du/sh p) out-
side 1t (u < py). Substituting i and y, in (5.2) and using (3.7) produces the follow-
ing relations between the integrals occurring in i, ,

b3 5 d.
[Tt n0 ==

X

S 1 dx
=j [an/z(x)]z x2—1

RY

i (K"'%) Ox+ 1/2(x) Qk- 1/2(x),
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= dx
jY P'l;+1 A(X)" 'IIHQ(X)XQ_—T

K=

2 dx 2 1
:f qu/z(—’C)erl/z TL_ Z <K+‘> QK+1,'2(X)'PI\’ |‘2(x)-
. x°—1 o 2

The derivative w.r.t. x gives

2 Y K [0k 1n(x)]?

K=0

S CIRE 1V L CRE ) S AT R T RS

2 Z K- Qr_1n(x) Py n(x)

K=0
1

1 2
ZP—I/Z(X).Q Sl + <"+—>

XQII+]7(Y) Pn+l7( ) P;11+17( Qn+l7

—‘QHIZ( x)- P 1/2( X)~—

As n— oo Eq. (5.3) goes into

gl

2 K [Qx 15(x)1P=[0",.(x ]~—[Qm( )]°,

K=1

H

whereas both sides of the (5.4) tend to infinity as »/sh p.

6

2

s

203

(5.3)

The following analytical equations are based on the fact that outside the solenoid
(where H=rot A =0) the VMP may be presented as a gradient of some function y
[14] (which we call a generating function). As § 4,d/ along the closed contours,
passing through a torus hole (Fig. 1) differs from zero, y is a multivalued (more
exactly: discontinuous) function. For the infinitely then toroidal solenoid (R/d < 1

or py> 1) x is defined by the relations, following from (3.2),

4y

ch i —cos 0 \/_

Ap sin 6

———— = /2 ng exp(—2uy) ———————
ch p—cos 6 f ”0,/chu—0050

P*l/?.(Ch .u) cos 0 — Pl/z(ch ,u) _

exp(—2u,)
Pl \/chu—cosﬂ

10
P} (chuy=--—==
1/2 a’u

1 3yq

s
e

(6.1)
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Now integrate Eqs. (6.1) resp. over 6 and y and equate the results:

204 Z sin nf

n=1

~2P5(ch u)- Q, x(ch N)}

’ {P— l,/'Z(Ch ,U.) ' [Qn + l,/Z(Ch /J) + an 3/2(Ch H)]

- —2{2 sinnd- [ PLch 0)[Q, 1 alch w)— Q, _ya(ch u)] du

1
n=1 0
0
+n<1 ~c0s§> sgn 9}. (6.2)

Taking into account [6], that

* 1 sinnd 6
e V. T 1 —cos~
Znn2—1/4 20 Zn( cosz>sgn9

n=1

and comparing coefficients at sin #0 in (6.2) one obtains

L\. P! (x)Q, 12(x) dx
/1 11ip .
_Z<W_ ) 1P (%) [Qn i 12(x) + 0, 30(x)]
— 2P (x) Q1)) + 12, nzl. (6.3)
4n
When u — o0, (6.3) goes into
" pi .0l _L
jl Pia(x) Q, p{x)dx= an (6.4)

Applying the same procedure to a solenoid of finite thickness (R~ d) one gets
[1] a system of finite difference equations for the integrals F, = {{[Q, ,(x)]%dx
and C,,=j-}' P, 1a(x) Q. (x)dx. This system may be solved and one obtains
the following simple analytic equations for F, and C,,,

n—1 1
nF,=y x?—1 Kzom [Qk+ 1/2(x) ’ Q}<+ 1/2(x) —Qx_ 1/2(x)' Q}(- 1,f'z(x)]

ln—l 1

5,}:0 (K+1/2)% (62)

-1 1
n-C,=y xt—1 Z rY N [QK+I/’2(X)'P}(+1/2(X)_QK—1/2(X)'P;(ﬁ 1/z(x)]-
Ko 2K+ 1
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As x - oo, the first of the relations goes into the known one [3],

X, 1'(2 n--1 1

2 w12 dx=—— —_

), 1Qn el Pdr=3 L KT 1T

whereas both sides of the second relation (6.5) behave like In./x. As p,— oo the
generating function for the toroidal solenoid of finite thickness (R ~ ) should pass

into y, (given by (6.2.)). This leads to the following condition [1]

K=0

1 ! 1 n’
‘Z Sn = 2n[Pn” l,"Z(X) ' Fn_ Qn—— l,"Z(x). Cn] +[ Z m‘?} ' Pn -1 Z(X)v

where S, is given by
S, = Z { [Qksin(X)+ 0k 32(X)TP 12(x)—20k. 1a(x) Py,
K=1

X [Qk -1 l,/Z(x) - Qk’+n - I,Z(X)]/K'

Equation (6.6) generates many useful relations. For example, as x - oo one obtains

" [(K=172) Tn=K+1/2) _ ~I(n+1/2)
MK+1)-Mn—K+1) _2\/5—7%——. (&7

K=1

Although similar to the Dougoll formula [3], it does not reduce to it.

7

Here we collect together some sums and integrals:

% [ | s
ngo(—l)"'(Zn-}-l)'Qn. "’/Z(x).Q”“"Q(X):gﬁ Qm( -2’-’: >, (7.1)
x 2 'Y
(vI_ 1372 {(7.2)

S Qn4 10,130 Q20 =g

n=0
e

Q 15(x) Qua(x)+ 3 (= 1) Q2 ialx)

[@n+1)Q,,  1p(x)—(dn—1) Oy, ;34(x)]
x?
>, (7.3)

s X
22— Ca ( /27— 1
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Z (=D (n+1)-2n+1)-Q, 15(x) Qyi1p(X)

1 1+ 14 x?
:A%XT-[}(HY Q12< :>+2(x2—1)~Q},,2< ;;)], (7.4)

(=1 (dn+ 1) (4n+3) Qoy 12(x) [Q2 4 32(x) — Q2 - 12(x)]

xo(a?—1 x*
2—\%7\;%%[2 {”2< 2;—1>_3Q”2< 2;—1)]’ 72)

z Qn 12l Q1+17 _%h<\/;:Tl—l>, (7.6)

2

Ragk

n=20

2 al 7.7

[0 sty Z (G 1al) 2\m— (7.7)
s dx 1+r+x T _

P A A LRV <r<ld 7.8

J.o (1+vc 3/4Q1 ( \/iT’C—> \/;(1 1—r7) 0<rgl) (7.8)

2 Y K[Ox 1207
K=0

S INE L (O +(n+ )[Q,,H/z( O [0), aw] (79)

2 i K- Qg 1(x) Pg_yn(x)

1 2
—Ql 1’(’() P! |7(Y)_—Q 1/2( -P_ 1/2( )+<n+§>
X Qn+ 1,’2(x) ’ Pu+ I/Z(X)_—P;lz+ l/Z(x)' Q;IH— 1/’2(x)’ (710)
l
2 Z K-[Qx 1) =10 2(x)] —Z[Q,,l/z(X)]z, (7.11)

[Pt ) ) ) d

1/ 1
zz (W‘ 1) {P - 1/2(x)' [Q,+ 1/2(X) + an3/z(x)]

1
—2-Pp(x) 0, 1p(x)} o (7.12)
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- 1
f PLia(x) @ ia(x) dy =, (7.13)
n] 10u- 10
=/x =1 Z 2K+1 "[Qk+12(%) Ok 4 12(x)

-QK——— QK m ]~1”Z ( ) p (7~14)

im—1

" J. Q, 12(x) P, v= /-1 Z 21<+ i

[Qki100X): P}H (X)) = 0x 1a(x) P}( (0], (7.15)

" NK—1/2) Mn=K+1/2) _, ~In+12)

K+ D) I(n—K+1) VE T (7.16)

K=1

In all these relations x is always greater than 1; >0 in (7.9) and (7.10) and
nz1in (7.12)-(7.16).

Many useful relations may be obtained by applying the Whipple relation [3]
between the Legendre functions to (7.1)—(7.15) (from e.g., (7.2) and (7.6)),

s 2n+1 |

- . P Cpn+l __r /__zj /

o0 [r(n-}- ]/2)]3 P i 2(-‘6) P 2(,\’) o X \//'\ 1, (7.2)

A l nA+ | __l_ /—T_———— /
L T T P = s e e D 76

REFERENCES

1. G. N. Aranasiev, JINR, E2-83-339, Dubna, 1983; E-4-84-65, Dubna, 1984.

. R. CouranT AND D. HILBERT, Methods of Mathematical Physics, Vol. Il, (Interscience, New York,
1962), p. 254.

3. H. BATEMAN AND A. ERDELYL, Higher Transcendental Functions, Vol. I, (McGraw-Hill, New
York/Toronto/London, 1953).

4, E. W. HossoN, Theory of Spherical and Ellipsoidal Harmonics (Cambridge Univ. Press, London,
1931).

5. L. ROBIN, Fonctions spherique de Legendre et fonctions spheroidales Vol. 1-3 (Gauthier—Villars,
Paris, 1957-1959).

6. 1. S. GRADSCHTEYN AND . M. RYZIK, Tables of Integrals, Series and Products (Academic Press, New
York, 1965).

7. A. D. WHEELON, Tables of Summable Series and Integrals involving Bessel functions (Holden—Day.
San Francisco, 1968).

(3]

581:69:1-14



208 G. N. AFANASIEV

8. A. P. PrRuDNIKOV, YU. A. BRYCHKOV, aND O. |. MARICHEV, Integral and Series, Vol. 1,2 (Nauka,
Moscow, 1981-1983).

9. W. MaGNus, F. OBERHETTINGER AND R. P. Sont, Formulas and Theorems for the Special functions of
Mathematical Physics (Springer, Berlin, 1966).

10. E. R. HANSEN, A Tuble of Series and Products (Prentice-Hall, New York, 1975).

11. M. ABraMOWITZ AND . A. STEGUN, Handbook of Mathematical Functions {Dover, New York,
1965).

12. H. van HAERINGEN AND L. P. Kuk, J. Math. Phys. 22, 2482 (1981); H. vaN HAERINGEN, J. Math.
Phys. 23, 1964 (1982); 24, 1054, (1983); A. GErvols AND H. NAVELET, J. Math. Phys. 26, 639 (1985);
A.BEIG, J. Math. Phys. 26, 769 (1985).

13, P. R. Brazier-SMITH. J. Comput. Phvs. 54, 524 (1984).

14. S. N. M. RUISENAARS, Ann. Phys. (N.Y.) 146, 1 (1983); H. J. ROTHE., Nuovo Cimento A 62, 54
(1981); D. Bonm, R. D. KAYE, anp C. PHiLLIPIDIS, Nuove Cimento B 71, 75 (1982).



